Integration Challenges, Cooling and Structural Requirements for Hybrid Powertrain Installations on a GA Airframe

Symposium E2 – Fliegen, Flughafen Stuttgart

February, $18^{th} - 19^{th}$, 2016

Vid Plevnik, PIPISTREL d.o.o. Ajdovščina

Overview

- Hypstair concept
- Baseline configuration
- Design iterations to final configuration
- Installation of real components and power-up
- Next steps

HYPSTAIR Installation Platform Concept

HYPSTAIR Serial Hybrid Drive Components

Hybrid architectures: serial vs parallel

Serial Hybrid (HYPSTAIR)	Parallel Hybrid
+ Two independent energy sources	- Closely coupled
- Electric generator	+ No electric generator
- At least two inverters	+ One inverter
+ Cruise RPM is not linked to the ICE	 Cruise RPM linked to the ICE
+ Optimum propeller efficiency from take-off to cruise	 Oversized propeller for cruise
+ Low noise (pure electric take-off), low cruise RPM	 No big difference to classic engine
+ Suitable for new aircraft configurations (e.g. distributed propulsion)	 Classic configurations only

OHYPSTAIR

Configuration of the Hypstair Platform (Baseline)

Vid Plevnik | Pipistrel

Aerodynamic Shape Concept (Baseline)

HYPSTAIR

Cooling Air Intakes

Vid Plevnik | Pipistrel

ICE and Generator Integration

ICE and generator mounted in direction opposite to flight to simplify integration and enhance accessability

Vid Plevnik | Pipistrel

Three Design Iterations to Optimize Packaging

Iteration two (grey) and three (brown)

A total reduction of 150 mm in length was achieved by:

- Simplification of engine mount due to stiff mounting of the electric motor
- Front mounting of electric motor accessories (governor, coolant and oil pump)
- Repositioning of ICE, generator and inverters
- Combining cooling circuits with heat exchangers

Vid Plevnik | Pipistrel

Final Configuration: Firewall Forward

Vid Plevnik | Pipistrel

Final Configuration: Battery System

Vid Plevnik | Pipistrel

NHYPSTAIR

Weight comparison: Hypstair vs. Piston Engines

	Gasoline Engine	Diesel Engine	HYPSTAIR				
	e.g. Lycoming 260 HP	e.g. SMA 230 HP	200 kW (270 HP)				
dry weight	190 kg	210 kg	160 kg				
batteries	-	-	100 kg				
accessories	20 kg	35 kg	15 kg				
liquids	6 kg	8 kg	5 kg				
starter battery	11 kg	11 kg	-				
Total	227 kg	259 kg	280 kg				

Physical Integration of Components and Power-up

- All components for initial power-up were installed
- Component tests (inverters, electric motor, ICE, generator, battery) were successful
- Successful runs on battery power
- Successful battery charging from generator on ICE power
- First successful run on combined battery and generator power

High Power Runs with Propeller Installed

Vid Plevnik | Pipistrel

Bird's Eye View of the Hypstair Platform

CHYPSTAIR

Vid Plevnik | Pipistrel

w	w	w	н	Y	P	s	т		R	P	R	0	J	E	с	т	с	•	M

HYPSTAIR

Next Steps

- Installation of remaining components
- HMI Integration
- Cowling and intake ducts installation
- System level testing

PIPISTREL

SIEMENS

Thank you for your attention. Questions?

MI=Vision

Vid Plevnik | Pipistrel