



#### **Contents**



- The HYPSTAIR Propulsion System Design Approach
- The HYPSTAIR Propulsion System Architecture & Components
- The HYPSTAIR Propulsion System Built-in Redundancy
- Technical & Regulatory Challenges for Novel Designs



# The Pipistrel Panthera It's beautiful already – let's make it a pioneer of green aviation

**SIEMENS** 



# A high power-to-weight e-motor alone is not doing the trick

Conventional G/A piston engines ...

- ... can integrate a **hydraulic governor**
- ... provide **pressurized oil** to the governor
- ... are air-cooled or have an integrated, mechanically linked cooling pump
- ... work with high (~ 120°C\*) coolant temperatures keeping cooling drag and cooling subsystem weight down
- ... have an integrated propeller mount





# The HYPSTAIR System Design Approach: Aircraft-Level Optimization



18.02.2016

# The HYPSTAIR System Architecture 2 separate power paths for near-twin-like levels of redundancy





Page 6 18.02.2016

Restricted © Siemens AG 2016

Heintje Wyczisk, Claus Zeumer / CT REE AIR

# **The HYPSTAIR Components**

#### Siemens Generator - 100kW MCP

• **LIGHTWEIGHT** Power density 5,3 kW/kg

• SAFE Redundant winding system

• **ROBUST** 90 - 105°C coolant inlet

temperature

• **EFFICIENT**  $\eta > 95\%$  at cruise power

HIGH LEVEL OF INTEGRATION

Acts as ICE starter

Acts as ICE flywheel



# **The HYPSTAIR Components**

# Siemens NextGen Converter – 100 kVA

• **LIGHTWEIGHT** power density of 10,5 kW/kg

• EFFICIENT  $\eta = 98\%$ 

• **ROBUST** 85 °C coolant temperature

• SMART Integrated Central Control Unit for

- Inverter Control Functions
- Central Control Functions



# **The HYPSTAIR Components**

# Siemens e-Motor - 150kW MCP, 200kW MTOP

• LIGHTWEIGHT 3,7 kW/kg @ MCP

5,0 kW/kg @ MTOP

SAFE Redundant winding system

• ROBUST 90 - 105°C coolant inlet

temperature

• **EFFICIENT**  $\eta = 96\%$  at cruise power

HIGH LEVEL OF INTEGRATION

• Built-in propeller bearing

Integrated governor & oil pump

Integrated cooling pump



# Redundancy in many components increases safety and minimizes risk of total loss of power 1/2



#### Fully operational, undegraded HEPS



#### Control Unit #1 malfunction



#### E-Motor winding malfunction



#### Generator winding malfunction



Page 10

18.02.2016

Restricted © Siemens AG 2016

Heintje Wyczisk, Claus Zeumer / CT REE AIR

# Redundancy in many components increases safety and minimizes risk of total loss of power 2/2



#### Battery malfunction



### Combustion Engine malfunction



#### Inverter malfunction



Restricted © Siemens AG 2016

Page 11 18.02.2016

Heintje Wyczisk, Claus Zeumer / CT REE AIR







Ingenuity for life

# Technical & Regulatory Challenges for Novel HEPU / EPU Designs

© Siemens AG 2016 www.siemens.com



# **Technical Challenges of Novel EPU/HEPU Designs**

#### Principle design aspects:

- ✓ Development of sustainable airborne application concepts for electrical machines & power electronics
- ✓ Availability of high power dense energy sources > 500 Wh/kg
- ✓ Application optimized ICE concepts
- ✓ Reduction of overall system complexity
- ✓ Higher EPU/HEPU integration level to airframe designs
- ✓ Structural weight optimization of passive parts e.g. usage of alternative materials

#### Reliable safety concepts to:

- ✓ Avoid thermal runaway conditions of high voltage batteries
- ✓ Operate "safe & redundant" control system architectures (HW / SW)
- ✓ Reliable and usefully HMI concepts
- ✓ Realize electrical security using high voltage in aircraft > 1.000 V (AC/DC)
- ✓ Enable the usage of power electronics at high altitudes considering cosmic radiation effects, etc. ...

#### Efficient cooling system concepts for:

- ✓ Operational temperature and air density range
- ✓ High voltage batteries get max power output / time
- ✓ Electrical machines & power electronics to realize high power density

# **Sources for Electric Flight Certification Basis**

#### **SIEMENS**

#### EASA sources for electric powered a/c:

- CS-22 motor gliders (SC-22.2014-01)
- EASA CS-LSA Issue 1 (referring to ASTM F2840)
- DO-311(A) Minimum Operational Performance Standards for -Rechargeable Lithium Battery Systems
- SAE J2464 Electric and Hybrid Electric Vehicle
   Rechargeable Energy Storage System Safety and Battery
   Abuse Testing
- EASA CRI F-58 Lithium Battery Installations
- LBA SC Brennstoffzellen 3. Ausgabe April 2012
- ASTM F2840 14
- ASTM F44.40 WG Integration (wip)
- ASTM F39.05 WG EPU&HEPU (wip)
- Industrial Standards & Specs DIN 29576, MIL-HDBK-274...
- FAA Electric Propulsion A Regulatory Feasibility Study
- Austro Control Guideline for Installation & Certification

- CS-E / CS-23 (incl. A-NPA 2015-06, planned publ. Q2/2016)
- AC23.1309 System Safety Analysis and Assessment for Part 23 Airplanes
- AC23.1311 Installation of Electronic Display in Part 23 Airplanes
- AC23.1521 –Type Certification of Automobile Gasoline in Part 23 Airplanes with Reciprocating Engines
- AC23-2 Flammability Tests
- ARP-4754 / ED-79 System Development Process
- ARP-4761 Safety Assessment
- DO-160G/ ED-14 Environmental conditions and test procedures
- DO-254/ED-80 Electronic HW Development Process
- DO-264
- DO-200A / DO-201A Airborne Databases
- DO-178C / ED-12 Software considerations in Airborne Systems and Equipment Certification



# **Regulatory Challenges of EPU/HEPU Designs**

- ➤ Design & Airframe integration aspects: → only basic regulations / proposals are available ...
  - ✓ ASTM F2840-14
  - ✓ CS-22H
  - ✓ SC's / CRI's
  - ✓ A-NPA's
  - ✓ Guidance material ...
- ... but don't cover yet the full range of required regulatory frame for sustainable HEPU / EPU product development & certification base (future airworthiness design standards)
- Adaptation/inclusion of existing regulatory frame (CS-x) to new technology need to be simplified and easy traceable (e.g. same CS-x numbering vs. trace matrix for more transparency & less complexity, especially important for aviation novices)
- Standard (ELOS) interpretation of conventional airworthiness requirements are only partly usable/reasonable, because of new technology aspects (→ new AMC's / guidance material required)
- Current initiatives like ASTM with initially transparent process for re-writing FAR-23 making slow progress, because of low willingness to invest significant effort, but political interest very high

# Thank you for your attention!







Head of Certification & Processes
CT REE AIR CR

Günther-Scharowsky-Str. 1 91058 Erlangen

Phone: +49 (9131) 7-27955 Fax: +49 (9131) 7-28173 Mobil: +49 (174) 3135942

E-Mail:

Heintje.Wyczisk@Siemens.com

**Claus Zeumer** 

Project Manager eAircraft
CT REE AIR PROM

Günther-Scharowsky-Str. 1 91058 Erlangen

Phone: +49 (9131) 7-22139 Fax: +49 (9131) 7-28179 Mobil: +49 (173) 6394415

E-Mail:

Claus.Zeumer@Siemens.com

HYPSTAIR