Simplified Testing Methods for Hybrid Powertrains

Miran Rodič and Mitja Truntič
University of Maribor,
Faculty of Electrical Engineering and Computer Science,
Institute of Robotics

Contents

- Introduction
 - How can the method be simplified?
 - How can the cost of testing be reduced?
- Emulation of loads:
 - Hardware-in-the-Loop (HIL)
 - Static emulation
 - Dynamic emulation
- A practical example
- Conclusion

How can the method be simplified?

- By using standard (well-known) tools
 - Usually already qualified!
- By reducing the need for safety functions
- By the automatization of processes
 - Repeating the same test for several times
 - Changing only some inputs into tested HW/SW
- By performing tests on ground

How can the cost of testing be reduced?

- By reusing existing HW/SW
 - Tools need to be qualified!
- By replacing full devices with active loads
 - Using HiL systems
 - Applying emulation approaches
 - Separating unit from the vehicle and testing is possible, all other systems are emulated
- By performing tests on ground

HiL (Hardware-in-the-Loop) system

Emulation of loads

- Types of loads (also sources):
 - Mechanical loads
 - Electrical loads
 - Mixed loads
- Approaches:
 - Static emulation
 - Dynamic emulation
- Requirements-based testing
 - Black box!

HIL system in load emulation

Setup – electrical – drives & batteries

- Two motors
 - Drive
 - Load / Testbed
- Load is connected to 3ph supply
 - Grid used instead of power dissipation
- Drive is powered by battery

Setup – electrical – testing of batteries

Battery can be connected to same circuit as 3ph PFC!

WWW.HYPSTAIR.EU | INFO@HYPSTAIR.EU

Setup – drivetrain (drive & generator & batteries, no ICE)

Microcontroller card

FPGA card

Board & module

Use of states, I/O

Static emulation of mechanical loads

- Classical approach for the measurement of electric motors characteristics
- Control systems can be tested
- Testing is possible with constant or stationary loads
- "Open-loop" emulation

Static emulation – some loads

Basic principle:

$$T_e - T_L = J_m \frac{d\omega}{dt} + B_m \omega$$

Various load types:

- Linear friction:
$$T_L = B_v \omega$$

- Static friction:
$$T_L = B_{st} \operatorname{sign}(\omega)$$

- Air resistance:
$$T_L = B_{air}\omega^2$$

Static emulation - disadvantage

- The method is only practical for the testing of stationary operation.
- It fails in cases of:
 - Nonlinear systems
 - Systems with changing inertia

$$T_{L} = \left(J_{em} - J_{m}\right) \frac{d\omega}{dt} + \left(B_{em} - B_{m}\right)\omega$$

Numerical derivation would be required!

Dynamic emulation of mechanical loads

- Same hardware as for static emulation can be used.
- Only software needs to be upgraded.
- Control systems can be tested under dynamic conditions
- "Closed-loop" emulation

Dynamic emulation ... - basic principle

Dynamic emulation ... – applied principle

G(s) – actual system

 $G_{em}(s)$ – emulated system

 $G_t(s)$ – torque controller

 G_c (s) – compensation algorithm

Additional feedback control is used (G_t(s))

Dynamic emulation ... – applied principle – emulated load

Dynamic emulation ... – some loads

Linear load emulation

$$\begin{split} J_{em} \frac{d \, \omega_{em}}{dt} + B_{em} \, \omega_{em} &= T_e - T_L^* \\ \frac{d \, \varphi_{em}}{dt} &= \omega_{em} \end{split}$$

Nonlinear load emulation

$$J_{em} \frac{d \omega_{em}}{dt} + B_{em} \omega_{em} + mgl \sin \left(R \varphi_{em}\right) = T_e - T_L^*,$$

$$\frac{d\varphi_{em}}{dt} = \omega_{em}$$

Electric vehicle emulation

$$\frac{d\omega_{em}}{dt} = \frac{T_e - RT_b - Rr\left(C_aR^2r^2\omega_{em}^2 + B\omega_{em} + mg\sin\alpha\right)}{J_e + R^2(J_w + mr^2)}$$

Airplane model

Aircraft altitude:

$$\frac{dh}{dt} = v \sin(\gamma)$$

Airspeed:

$$\frac{dv}{dt} = \frac{F_{prop}\cos(\alpha) - D}{m} - g\sin(\gamma)$$

Aircraft flight path angle:

$$\frac{d\gamma}{dt} = \frac{F_{prop}\sin(\alpha) + L}{mv} - \frac{g}{v}\cos(\gamma)$$

Lift and drag:

$$L = \frac{1}{2} \rho_a v^2 S_w \left(C_{L,\alpha} \alpha + C_{L,0} \right)$$

$$D = \frac{1}{2} \rho_a v^2 S_w \left(C_{D,\alpha} \alpha + C_{D,0} \right)$$

The drag force (thrust) and propeller torque:

$$F_{prop} = \rho_a \left(\frac{\omega}{2\pi}\right)^2 C_{\rm T} d^4$$

$$T_{prop} = \rho_a \left(\frac{\omega}{2\pi}\right)^2 C_{\rm T} d^5.$$

Electric motor mechanism dynamics:

$$J_{drive} \frac{d\omega}{dt} = T_{drive} - T_{friction} - T_{prop}$$

HIL system – drive and load

drive

load

clutch

Not always practical for high powers (and in planes – propeller!)

Producing load torque with propeller

Propeller torque:

$$T_{prop} = \left(C_L \cos(\beta - \alpha) - C_D \sin(\beta - \alpha)\right) \frac{1}{2} \rho_a A_{prop} r \left(\frac{r\omega}{\cos(\beta - \alpha)}\right)^2$$

Can be rewritten as:

Inverse function not that simple – Lookup-table (LUT) should be used

Additional tests

Testing has better chance to be successful if multiple events occur simultaneously!

Conclusion

- Cost of testing can be significantly reduced
- HiL systems are a good solution
 - High cost, but can be reused
 - Low cost solutions are possible
 - Multiple events can be generated
 - Data can be logged

Discussion

